GALOIS p-GROUPS AND GALOIS MODULES

نویسندگان

  • SUNIL CHEBOLU
  • ANDREW SCHULTZ
چکیده

The smallest non-abelian p-groups play a fundamental role in the theory of Galois p-extensions. We illustrate this by highlighting their role in the definition of the norm residue map in Galois cohomology. We then determine how often these groups — as well as other closely related, larger p-groups — occur as Galois groups over given base fields. We show further how the appearance of some Galois groups forces the appearance of other Galois groups in an interesting way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 5 GALOIS MODULE STRUCTURE OF p TH - POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F . In 1947 Šafarevič initiated the study of Galois groups of maximal pextension...

متن کامل

M ar 2 00 6 AUTOMATIC REALIZATIONS OF GALOIS GROUPS WITH CYCLIC QUOTIENT OF ORDER p n

We establish automatic realizations of Galois groups among groups M ⋊ G, where G is a cyclic group of order p for a prime p and M is a quotient of the group ring Fp[G]. The fundamental problem in inverse Galois theory is to determine, for a given field F and a given profinite group G, whether there exists a Galois extension K/F such that Gal(K/F ) is isomorphic to G. A natural sort of reduction...

متن کامل

Galois Embedding Problems with Cyclic Quotient

Let K be a cyclic Galois extension of degree p over a field F containing a primitive pth root of unity. We consider Galois embedding problems involving Galois groups with common quotient Gal(K/F ) such that corresponding normal subgroups are indecomposable Fp[Gal(K/F )]modules. For these embedding problems we prove conditions on solvability, formulas for explicit construction, and results on au...

متن کامل

Se p 20 04 GALOIS MODULE STRUCTURE OF p TH - POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F .

متن کامل

GALOIS MODULE STRUCTURE OF pTH-POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE p

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014